Subscribe free to our newsletters via your
  Wind Energy News  

Subscribe free to our newsletters via your

Re-thinking renewable energy predictions
by Staff Writers
Tancha, Japan (SPX) Mar 14, 2016

Wind turbines, such as the ones pictured above create electricity when the wind spins the blades and rotor, which turns a generator. Power is dependent on the amount of wind available at any given moment.

Unlike conventional energy sources, like coal or oil, the supply and demand of renewable energy are, to a large extent, unpredictable because they are affected by the natural fluctuations in the power source itself. This poses a number of difficulties in calculating how much renewable energy will be available for consumer needs at any given time.

A team of researchers, led by Prof. Mahesh M. Bandi of the Okinawa Institute of Science and Technology Graduate University (OIST) wanted to explore some of these scientific problems involved in the fluctuations of renewable energy and how to better predict energy outputs. The team recently published their results in the New Journal of Physics.

"A fluctuating power source threatens the even distribution of power in the electrical grid," Bandi said. "That makes it difficult to balance the fluctuating power output with the fluctuating consumer demand."

Bandi and two of his co-authors, Golan Bel and Colm Connaughton, were post-docs at the Los Alamos National Laboratory at the same time and learned that they liked to "cook up scientific problems while hiking," said Bandi. So they decided to take their questions about renewable energy fluctuations with them on a hike in Okinawa, Japan.

The team, including Mart Toots, a graduate student working with Bandi at OIST during his first year rotation, analysed data from the Irish grid wind farms and saw that power outputs from the farms on the grid fluctuate in similar ways. This is different than previously thought.

"It's generally assumed that geographically distributed wind farms are independent. In other words, the fluctuations in power output from one wind farm are different from that of another wind farm, say 50 km away," Bandi said.

Instead, the data that Bandi and his team analysed showed that the wind farms on a grid no longer function independently of one another in response to local wind speed conditions, but instead become part of a larger geographic weather system that forces all the wind farms to have similar or correlated outputs for a time span of up to one day.

"If there is a medium that connects them, then one will observe that the two wind farms will fluctuate in a similar fashion. This does not mean their outputs are exactly synchronized at every instant, but on average their outputs fluctuate very similar to each other. The average is important. That is what we mean by correlated," said Bandi.

The unpredictability of wind power supply, as well as working with a larger geographic weather system can then create errors in forecasting power output. Therefore, Bandi and his team quantified two types of errors found in forecasting through statistical analysis to identify trends and analyse fluctuations around those trends in the wind power grid data. The two types of errors are: time-scale and scaling.

Time-scale error is the interval of time which the statistical models are not making any predictions, which creates uncertainty for select periods of time. Scaling error is the degree to which current forecast models fail to predict correlations in the fluctuations between different wind farms for generated power, which Bandi says is not often taken into consideration because "when people estimate error, they don't think about correlations."

The statistical analysis performed by the researchers could be important in more accurately predicting the supply and demand necessary in wind power and this method could be applied in other renewable energy research.

"This technique or tool is not limited to wind power," Bandi said. This means it can also be used across other renewable energy sources to predict error, so long as they possess time-related corresponding changes that have a statistical structure.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Wind Energy News at Wind Daily

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Norway's Statoil makes U.S. wind energy bet
New York (UPI) Mar 7, 2016
A capital fund set up by Norwegian oil and gas company Statoil said it made its first ever renewable energy investment with an eye on small-scale U.S. wind. Statoil Energy Ventures, the company's $200 million venture capital fund, said it formed a partnership with United Wind to look for small-scale wind energy solutions in the United States. "Today's investment in United Wind se ... read more

Russian Scientists Suggest New 'Nuclear Battery' Concept

Abe says Japan 'cannot do without' nuclear power

Global leaders in nuclear innovation gather at SMR and Advanced Reactor Summit in Atlanta

Low turnout at anti-nuclear rally as Taiwan pins hope on new leader

Whole Foods Market announce large scale commercial solar project

Brazil uses dammed lake surface for floating solar panels

Skypower partners with Sachigo Lake First Nation to build solar parks

Spain's Abengoa reaches preliminary deal with creditors to avoid bankruptcy

Stanford scientists make renewable plastic from carbon dioxide and plants

Biofuels from algae: A budding technology yet to become viable

Researchers' new advance in quest for second generation biofuels

Improving biorefineries with bubbles

Xinjiang Goldwind now world's top wind turbine producer

Norway's Statoil makes U.S. wind energy bet

Adwen Chooses Sentient Science For Computational Gearbox Testing

EU boasts of strides in renewable energy

Long march in Bangladesh against Sundarbans power plant

China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

Syracuse chemists combine biology, nanotechnology to create alternate energy source

Plasma processing technique takes SNS accelerator to new energy highs

Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

Syracuse chemists combine biology, nanotechnology to create alternate energy source

Plasma processing technique takes SNS accelerator to new energy highs

GM buys self-driving technology startup Cruise

China car sales edge down in Feb: industry group

Sweden's Volvo wants standard plugs for electric cars

In crowded Cairo, ride-hailing apps leave cabbies fuming

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.